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INVASION OF UNISEXUALS IN HERMAPHRODITE POPULATIONS OF
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Abstract. The most common sexual system in animal-pollinated plants is hermaphroditism, while some species are
dioecious or gynodioecious and a very few are androdioecious. In this paper, I attempt to explain this pattern by
extending previous models for the evolution of sexual systems to incorporate two main features: (1) a portion of
investment in pollinator attraction contributes to only female or male function, because one sexual function of a flower
is saturated with pollinator visitation earlier than the other sexual function; and (2) there are trade-offs between the
size and number of flowers. The analysis was conducted to determine the conditions when females and males can
increase in frequency in a hermaphroditic population, assuming either concave or convex pollinator gain curves (relation
between investment to attractive structures of a flower and frequency of pollinator visits to the flower). The results
suggest that both of the main factors play important roles in the evolution of plant sexual systems: uneven contribution
of pollinator-attractive structures and nonlinear trade-offs between flower size and number can destabilize hermaph-
roditism. When a convex pollinator gain curve was assumed, the effect of nonlinear trade-offs can produce accelerating
compensation from the elimination of one sexual function, allowing males to increase for large regions of parameter
space, where females could not increase. The last prediction obviously conflicts with the observed rarity of androdioecy
in nature, indicating the necessity of exploring pollinator gain curves in more detail.
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Most angiosperm species are hermaphroditic, some are di-
oecious (females and males) or gynodioecious (hermaphro-
dites and females), and a very few are androdioecious (her-
maphrodites and males; Darwin 1877). Previous theoretical
studies commonly attribute the higher frequency of her-
maphroditism to the fact that pure females or males only
contribute to future generations through seed or pollen, re-
spectively. That is, for females or males to invade a large
outcrossing hermaphroditic population, they must be at least
twice as fit in terms of female or male function, respectively,
than hermaphrodites (Lloyd 1975; Charlesworth and Char-
lesworth 1978). The conditions for males to invade become
more restricted with increased selfing by hermaphrodites, be-
cause selfing reduces the number of ovules available for fer-
tilization by males. It is easier, however, for females to invade
hermaphroditic populations when partial selfing occurs with
strong inbreeding depression, because females will, on av-
erage, produce more high-quality outcrossed seeds than her-
maphrodites (Lloyd 1975; Charlesworth and Charlesworth
1978). This is considered to be the main reason for the greater
frequency of gynodioecy than androdioecy in nature.

It has been proposed that investment in the structures used
by plants to attract biotic pollinators (e.g., perianth) favors
hermaphroditism over other sexual systems, because pollinator
attraction is a prerequisite for both pollen donation and receipt
(Ghiselin 1974; Charnov et al. 1976; Givnish 1980). Morgan
(1992) analyzed the role of pollinator-attractive structures in
the evolution of plant sexual systems. He constructed a model
involving allocation of a limited resource between attractive
structures, which benefits both sex functions, and predicted
that the spread of females or males in hermaphroditic popu-
lations requires at least one of the following conditions, even

if hermaphrodites largely depend on self-fertilization for their
reproduction: (1) greater allocation to female or male functions
results in accelerating gains in female or male fitness; or (2)
substantial asymmetry in the benefits accruing to female and
male fertility for a given investment in pollinator attraction.
However, as Morgan himself pointed out, most empirical stud-
ies have suggested that neither of these conditions is satisfied
in a wide range of plant species. Thus, for plants with polli-
nator attractive-structures, it remains uncertain what condi-
tions destabilize hermaphroditism.

In Morgan’s model, it was assumed that all investment in
pollinator attraction by hermaphrodites is a common cost for
both male and female functions, although these functions can
have different patterns of diminishing gains. However, a por-
tion of investment in pollinator attraction may contribute to
only one of the two sexual functions, because one sexual
function of a flower can be saturated with pollinator visitation
earlier than the other sexual function of the same flower. The
following three simple cases are possible. A portion of the
investment in pollinator-attraction benefits: (1) only female
function (female priority); (2) only male function (male pri-
ority); or (3) all investment in pollinator attraction increases
both sexual functions equally (equal priority). Male or female
priority would destabilize hermaphroditism, because the rel-
ative advantage of hermaphrodites over unisexuals is de-
creased. However, the effects of priority in pollinator-attrac-
tive structures on the evolution of sexual systems have never
been examined.

Previous models for the evolution of plant mating systems
have typically assumed that trade-offs involving reproductive
resource occur only within a flower. Investigators have at-
tempted to quantify those trade-offs by demonstrating neg-
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TABLE 1. List of parameters in the model and their definitions. In the text, subscripts on parameters N, A, F, and M stand for the sexual type
of the parameters; h, f, and m stand for hermaphrodite, female, and male, respectively.

Symbol Definition

Parameters subjected to natural selection
Nx

Ax

Fx

Mx

number of flowers per individual
resources allocated to attractive structure per flower
number of ovules produced per flower
number of pollen grains produced per flowers

Constants involved in reproductive resource allocation
T
co

cp

total resource available for reproduction per individual (.0)
cost of producing one ovule, including all allocation from flowering to fruit (.0)
cost of producing one pollen grain (.0)

a
b

nonlinear constraint against increasing flower size ($1)
fixed cost of producing one flower ($0)

Constants involved in reproductive success
eo

ep

s
d
V(A)

number of ovules cross-fertilized by one pollinator visit
number of pollen exported by one pollinator visit
selfing-fertilization rate (0–1)
inbreeding depression, defined as 1 2 (fitness of selfed progeny/fitness of outcrossed progeny), (0–1)
frequency of pollinator visits, a function of A, which satisfied V(0) 5 0

ative genetic or phenotypic correlations among traits within
flowers. However, it is generally observed that pollen pro-
duction, ovule production, and petal size correlate positively,
not negatively, thus casting doubt on the generality of trade-
offs within flowers (for a review, see Fenster and Carr 1997).
Lack of evidence for trade-offs within flowers would be ex-
pected, if trade-offs occur mainly between investment per
flower (hereafter referred to as ‘‘flower size’’) and number
of flowers. In fact, a recent study demonstrated that plants
with larger flower size have fewer flowers, whereas the dry
masses of organs in a flower were positively correlated with
each other (Sato and Yahara 1999; but see Worley and Barrett
2000). This suggests that trade-offs between size and number
of flowers may be stronger and more general than trade-offs
within flowers.

Here, I construct a phenotypic model to analyze how pri-
ority in pollinator attractive structure and size-number trade-
offs affect conditions for female and male invasion of her-
maphroditic populations with an evolutionarily stable strat-
egy (ESS) allocation and use this model to discuss the con-
ditions required to explain the general pattern in the evolution
of plant sexual systems in nature.

THE MODEL

Resource-limit Equations

The parameters are summarized in Table 1. Basic con-
struction of the resource-limit equation of hermaphrodites
(wild type) is identical to the ‘‘competing and delayed selfing
model with nonlinear constraint on flower number and size’’
in Sakai (1995). In the model, it was assumed that a quantity,
T, of some resource (e.g., carbon) is available to each indi-
vidual for reproduction per individual. For algebraic sim-
plicity, the model also assumed an annual life history and no
variation in T among individuals. In hermaphrodites, T is
divided equally among Nh flowers of resource cost Ah 1 coFh

1 cpMh 1 b, and thus, can be expressed as

aT 5 N (A 1 c F 1 c M 1 b) .h h o h p h (1a)

In this equation, coFh and cpMh are the resources allocated

to female and male structures per flower, respectively. Thus,
for female or male sterile mutants, T can be expressed as

aT 5 N (A 1 c F 1 b) and (1b)f f o f

aT 5 N (A 1 c M 1 b) , (1c)m m p m

respectively. Here, subscripts on parameter N, A, F, and M
represent the sexual type of the individual; h, f, and m rep-
resent hermaphrodites, females, and males, respectively. The
constant a ($1) represents nonlinear constraints against flow-
er size, which prevents plants producing very large flowers.
I included a because the cost of producing a flower probably
increases disproportionately with flower size due to resource
translocation (Sakai and Harada 2001; see Discussion) and
mechanical support or herbivore defense. The constant b
($0) represents the minimum cost of producing a flower,
which prevents plants from producing a very large number
of flowers even if A, M, and F are very small. I assumed b
5 1 for the numerical calculations in this study.

Fitness Equations

Basic construction of the fitness equation of hermaphro-
dites is identical to that of Sakai (1993). The fitness of her-
maphrodites (denote fh) consists of reproductive success
through selfed seeds, outcrossed seeds, and pollen involved
in outcross fertilization on other plants. Reproductive success
of females (ff) derives only from outcrossed seeds, whereas
that of males (fm) derives only from pollen involved in out-
cross fertilization on other plants.

In the model, reproductive success through selfed seeds in
hermaphrodites is expressed as s(1 2 d)FhNh, where s is the
selfing rate and d is inbreeding depression. Here, s is assumed
to be a constant for simplicity. The reproductive success
through outcrossed seeds is expressed as min[(1 2 s)Fh,
eoV(Ah)]Nh/2 for hermaphrodites and min[Ff, eoV(Af)]Nf/2 for
females; min[x,y] stands for the smaller value of x and y.
Thus, if the number of nonselfed ovules ([1 2 s]Fh for her-
maphrodites, and Ff for females) is smaller than that of out-
crossed pollen captured by a flower (eoV[A]), all nonselfed
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ovules form outcrossed seeds, but only eoV(A) ovules of a
flower form outcrossed seeds in other cases. The numerator
is divided by two because the relatedness of outcrossed seeds
to the maternal parent is 0.5. Reproductive success via pollen
is W min[M, epV(A)]N/2 for both hermaphrodites and males.
This equation assumes that all pollen is successfully exported
if the amount of pollen produced per flower, M, is smaller
than potential pollen export, epV(A), but only epV(A) grains
are exported in other cases. Again, the numerator is divided
by two, because the relatedness of seeds fertilized on other
plants to the paternal parent is also 0.5. Here,

* *min[(1 2 s)F , e V(A )]h o hW 5 , (2)
* *min[M , e V(A )]h p h

which represent the ratio of outcrossed seeds to pollen grains
successfully exported by hermaphrodites. An asterisk on pa-
rameters indicates that the parameters have evolutionarily
stable values. Note that the effect of rare sterile mutants on
W was neglected, because I only examined whether a mutant
can increase in frequency when introduced into a large her-
maphroditic population.

Accordingly, reproductive success of hermaphrodites, fe-
males, and males can be expressed as follows, respectively:

f 5 {s(1 2 d)F 1 min[(1 2 s)F , e V(A )]/2h h h o h

1 W min[M , e V(A )]/2}N , (3a)h p h h

f 5 min[F , e V(A )]N /2, and (3b)f f o f f

f 5 W min[M , e V(A )]N /2. (3c)m m p m m

ESS Resource-Allocation of Hermaphrodites

For each hermaphroditic population under the three pri-
orities, ESS resource-allocation of hermaphrodites was cal-
culated. In keeping with Sakai (1993), I assumed: (1) under
female priority, a hermaphroditic flower produces maximum
number of ovules that can be outcrossed with (i.e., [1 2A*h
s] 5 eoV[ ]); (2) under male priority, a hermaphroditicF* A*h h
flower produces the maximum number of pollen that can be
exported with (i.e., 5 epV[ ]); and (3) under equalA* M* A*h h h
priority, a hermaphroditic flower produces maximum num-
bers of ovules and pollen that can be outcrossed and exported
with (i.e., [1 2 s] 5 eoV[ ] and 5 epV[ ]). TheA* F* A* M* A*h h h h h
reason for these assumptions is, when a flower produces more
gametes than above, a fraction of ovules or pollen is wasted
without fertilization or export. Also, when a flower produces
fewer gametes than given by , a fraction of pollinator at-A*h
traction is wasted. Therefore, min[(1 2 s) , eoV( ] andF* A*h h

min[ , epV( )] in equation (2) should be eoV( ) andM* A* A*h h h

for female priority, (1 2 s) and epV( ) for male pri-M* F* A*h h h

ority, and eoV( ) and epV( ) for equal priority. From theseA* A*h h

arguments, equation (2) can be written as follows for each
priority:

*e V(A )o hunder female priority: W 5 , (4a)
*M h

*(1 2 s)F hunder male priority: W 5 , and (4b)
*e V(A )p h

*e V(A )o hunder equal priority: W 5 . (4c)
*e V(A )p h

ESS allocations of hermaphrodites for each priority, when
all parameters Ah, Fh, Mh, and Nh were subject to selection,
were obtained by calculations similar to Sakai (1993), using
equations (1), (3), and (4). In the calculations, I applied the
method of Lagrange’s multiplier, which enables us to treat
constraint-maximization problems as unconstrained-station-
ary problems (Intriligator 1971); a stationary point in the
analysis gives maximum fitness under constraint of the re-
source-limit equation. For the each priority, I obtained only
one stationary point in the analysis that satisfies . 0,N*h

. 0, . 0, and . 0. The results are summarizedA* F* M*h h h

in Table 2.

Range of Each Priority

From the definition of priority, female priority occurs when
epV( ) . , and male priority occurs when eoV( ) . (1A* M* A*h h h

2 s) . By substituting of female priority and of maleF* M* F*h h h

priority into these inequalities, I calculated the condition of
each priority (Table 2). Using the conditions and of eachA*h
priority, areas of the parameter space resulting in equal, fe-
male, and male priority were calculated numerically (Fig. 1).
To evaluate the effects of V(A) shape on the results, all nu-
merical calculations in this study were conducted under each
of the following definitions of V(A):

V(A) 5 log(A 1 1), and (5a)

k
V(A) 5 2 a (r 5 1, k 5 2, a 5 1). (5b)

k 2 a
1 1 rAe

Equation (5a) is a logarithmic function and (5b) is a sigmoidal
function. Both of the equations satisfy V(0) 5 0.

The reason I chose these functions as V(A) is that both of
them are diminishing-gain functions, but each function has
different properties: concave and convex (at least for small
A values). V(A) must be diminishing-gain functions under
assumption of trade-offs between flower number and size.
Because, if this is not the case (i.e., V[A] is a linear- or
accelerative-gain function), then each plant should produce
only one large flower when a 5 1 and b . 0. This situation
would be unrealistic in most of plant species.

In both V(A) functions, types of priority in hermaphroditic
population with ESS allocation were mainly determined by
coeo and cpep (Fig. 1a). Most of the parameter space around
coeo . cpep, coeo ø cpep, and coeo , cpep resulted in male,
equal, and female priority, respectively. Here, coeo and cpep
are the cost of producing one gamete times the number of
gametes exported or received per visit, and hence represent
the cost of producing outcross gametes per visit, when un-
fertilized ovules and unexported pollen remain in the flower.
Accordingly, it follows that: (1) male priority chiefly oc-
curred when cost of producing gametes per visit was higher
for outcrossing seed than pollen; (2) equal priority chiefly
occurred when it was almost same for outcrossing seed and
pollen; and (3) female priority chiefly occurred when it was
higher for pollen than outcrossing seed.

Conditions for the Spread of Females and Males

I investigated conditions for the spread of females and
males, when they are introduced into a large hermaphroditic
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TABLE 2. Conditions under which the investment in pollinator attraction contributes only to female function (female priority), only to male
function (male priority), and equally to both sexual functions (equal priority). For each priority, ESS allocation of hermaphrodites was also
presented.

Priority Condition ESS allocation of hermaphrodites

Female priority [(1 1 s 2 2sd)c e 2 c e ]V9(A*) . 1 2 sp p o o h
1 2(1 2 sd) c e 1o oA* 5 V(A*) 1 (a 2 1) 1 2 bh h 5 6[ ]V9(A*) 1 1 s 2 2sd 1 2 s V9(A*)h h

a
2(1 2 sd) c e 1o oN* 5 T aV(A*) 1h h@5 6[ ]1 1 s 2 2sd 1 2 s V9(A*)h

F* 5 e V(A*)/(1 2 s)h o h

1 2 s c e 1o oM* 5 V(A*) 1h h [ ]c (1 1 s 2 2sd) 1 2 s V9(A*)p h

Male priority [(1 1 s 2 2sd)c e 2 c e ]V9(A*) , 2(1 1 s 2 2sd)p p o o h
1 2(1 2 sd) 1

A* 5 V(A*) 1 (a 2 1) c e 1 2 bh h p p5 6[ ]V9(A*) 1 1 s V9(A*)h h

a
2(1 2 sd) 1

N* 5 T aV(A*) c e 1h h p p@5 6[ ]1 2 s V9(A*)h

1 1 s 2 2sd 1
F* 5 V(A*) c e 1h h p p[ ]c (1 2 s) V9(A*)o h

M* 5 e V(A*)h p h

Equal priority Cases other than those above 1 c e 1o oA* 5 V(A*) 1 (a 2 1) c e 1 1 2 bh h p p5 6[ ]V9(A*) 1 2 s V9(A*)h h

a
c e 1o oN* 5 T aV(A*) c e 1 1h h p p@5 6[ ]1 2 s V9(A*)h

F* 5 e V(A*)/(1 2 s)h o h

M* 5 e V(A*)h p h

population at the ESS allocation. This procedure implicitly
assumes two types of mutations can occur that affect the
sexual allocation: (1) mutations of small effect, which allow
hermaphrodites to reach ESS allocation; and (2) sterility mu-
tations of large effect, which allow unisexuals to exist in the
hermaphroditic ESS population.

A sterile mutant can increase in frequency if its fitness is
greater than the mean fitness of hermaphrodites. I identified
the reallocation strategy giving the sterile mutants maximal
fitness when introduced into the ESS hermaphroditic popu-
lation. This is the approach adopted by Morgan (1992). Her-
maphroditic populations in which these reallocation mutants
do not increase in frequency are stable against all sterile
resource reallocation mutants. Using this criterion, I calcu-
lated the optimal resource allocation of females and males
(Appendix) and summarize the results in Table 3. I calculated
conditions for the spread of sterile mutants (Table 4) by sub-
stituting the ESS allocation of hermaphrodites (shown in Ta-
ble 2), optimal allocation of females and males (shown in
Table 3), and W for each priority (equations 4a–c) into the
fitness equations (equations 3a–c).

From these conditions, areas of the parameter space where
unisexuals can increase in frequency were calculated numer-
ically (Fig. 2). In contrast to the previous model, my model
predicts that unisexuals can increase in frequency over a wide

range of parameters, while it includes costs of pollinator at-
traction. Under combination of high self-fertilization and
strong inbreeding depression, females can increase in fre-
quency regardless of the shapes of pollinator gain function.
When no self-fertilization occurs (i.e., s 5 0.0), invasion by
unisexuals requires a nonlinear constraint against increasing
flower size (i.e., a . 1.0) and a sigmoidal pollinator gain curve.
In this case, females can invade for most female-priority ranges
of coeo and cpep, males invade for most male-priority ranges,
but neither unisexual invades for equal-priority ranges.

DISCUSSION

Evolutionary Stability of Hermaphroditism

Hermaphroditism can be destabilized over a wide range of
parameters (Fig. 2), even if the cost of pollinator attraction
is taken into consideration. Morgan (1992) showed that her-
maphroditism of animal-pollinated plants can be destabilized
when there is substantial asymmetry in benefits accruing to
fertility for a given investment in pollinator attraction (i.e.,
gain-curves) between ovule fertilization and pollen donation.
However, he also pointed out that empirical studies suggest
that shape of gain-curves do not differ substantially between
sexual functions, leaving open the question of evolution of
sexual systems that include unisexuals in animal-pollinated
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FIG. 1. Areas of parameter space resulting in equal, female, and
male priority, when V(A) was (a) a logarithmic function and (b) a
sigmoidal function of investment in attractive structures. Each type
of line corresponds to a particular value of a, as indicated on the
figure. For each type of line, the area between the two lines results
in equal priority, and the lower right and upper left areas of the
equal-priority area result in female priority and male priority, re-
spectively. This evaluation was conducted for each combination of
three values of s (selfing rate) and two values of d (inbreeding
depression), each presented in a separate panel. b 5 1 was assumed
for the all calculations.

TABLE 3. Optimal resource allocation of females and males when
introduced into a large hermaphroditic population with ESS allocation.

Mutant Optimal allocation of sterility mutants

Females
(male sterility)

1 1
A* 5 V(A*) 1 (a 2 1) c e 1 2 bf f o o5 6[ ]V9(A*) V9(A*)f f

a
1

N* 5 T aV(A*) c e 1f f o o@5 6[ ]V9(A*)f

F* 5 e V(A*)f o f

Males
(female sterility)

1 1
A* 5 V(A*) 1 (a 2 1) c e 1 2 bm m p p5 6[ ]V9(A*) V9(A*)m m

a
1

N* 5 T aV(A*) c e 1m m p p@5 6[ ]V9(A*)m

M* 5 e V(A*)m p m

plants. Although my model assumed both of the sexual func-
tions share identical shapes of pollinator gain-curves, it also
assumed that one sexual function of a flower could be sat-
urated with pollinator visitation earlier than another sexual
function of a flower. This assumption of priority is one reason
for destabilizing hermaphroditism in my model, because the
advantage of hermaphrodites relative to unisexuals should be
reduced under female or male priority, where a fraction of
pollinator-attractive cost contributes only to female or male
function. In fact, the model predicts that hermaphroditism is

likely to be an ESS for most of the equal-priority areas, where
the whole cost of pollinator attraction is shared by both fe-
male and male function (Fig. 2). Therefore, these results sug-
gest that sexual systems including unisexuality are likely to
evolve in taxa for which a larger portion of pollinator-at-
tractive organs contribute to only one sexual function. How-
ever, to test this prediction using comparative analysis might
be difficult, because hermaphroditic species with such a large,
disproportionate, attractive organ would be evolutionary un-
stable, and thus unlikely to exist in nature.

Another factor that destabilizes hermaphroditism in the
model is nonlinear trade-offs between flower size and num-
ber; areas of parameter space where unisex can increase in
frequency were generally larger if the trade-offs are nonlinear
(Fig. 2). This effect of nonlinear trade-offs was commonly
magnified by a sigmoidal V(A) function. For example, when
s 5 0.0, hermaphroditism can be destabilized only when V(A)
is sigmoidal (Fig. 2). The reason for this would be: (1) non-
linear trade-offs occur between flower size and number limit
flower size, and (2) this limitation decreases the number of
ovules or pollen within a flower, while it does not signifi-
cantly reduce the cost of pollinator attraction in a flower,
because V(A) is sigmoidal. Consider an extreme situation,
where flower size and the cost of pollinator attraction are
nearly constant. Under male priority, for example, hermaph-
roditic flowers allocate more of resource to ovules than to
pollen (e.g., in the case of s 5 0.0, allocation to ovules is
coF* 5 cpepV[ ] 1 V[ ]/V9[ ], while allocation to pollenA* A* A*h h h

is cpM* 5 cpepV[ ]), because a portion of pollinator-attrac-A*h
tive cost is allocated to male function and it consumes re-
source to produce pollen. In this case, males can produce
more than twice as much pollen as hermaphrodites, because,
as I assumed, males and hermaphrodites have almost identical
flower size and the cost of pollinator attraction, allowing
reallocation to occur only between pollen and ovule produc-
tion within a flower. Even if males produce excess pollen,
pollinator visitation hardly limits its dispersal, because the
number of gametes within a flower is restricted by the non-
linear trade-off, not by efficiency of pollinator-attraction.



2379EVOLUTION OF SEXUAL SYSTEMS IN PLANTS

TABLE 4. Condition for females and males to increase in frequency when introduced into a large hermaphroditic population with ESS allocation.

Priority Mutant Range of parameter space where sterility mutant can increase in frequency

Female priority females
(male sterility)

a 1 
c e 1o o 1 1 s 2 2sd V(A*) V9(A*) 1 2 s V(A*)f f f, 

2(1 2 sd) V(A*) c e 1 2(1 2 sd) V(A*)h o o h 1
1 2 s V9(A*)h 

males
(female sterility)

a 1 
c e 1p p 1 1 s 2 2sd V(A*) V9(A*) 1 1 s 2 2sd V(A*) c em m m p p, 

2(1 2 sd) V(A*) c e 1 2(1 2 sd) V(A*) c e 1h o o h o o 1 1
1 2 s V9(A*) 1 2 s V9(A*)h h 

Male priority females
(male sterility)

a 1 
c e 1o o   1 2 s V(A*) V9(A*) (1 2 s) V(A*) c ef f f o o ,   2(1 2 sd) V(A*) 1 2(1 2 sd)(1 1 s 2 2sd) V(A*) 1h h c e 1 c e 1 p p p pV9(A*) V9(A*)h h  

males
(female sterility)

a 1 
c e 1p p 1 2 s V(A*) V9(A*) 1 2 s V(A*)m m m, 

2(1 2 sd) V(A*) 1 2(1 2 sd) V(A*)h h c e 1p p V9(A*)m 

Equal priority females
(male sterility)

a 1 
c e 1o o V(A*) V9(A*) 1 2 s V(A*)f f f, 

V(A*) c e 1 2(1 2 sd) V(A*)h o o h c e 1 1p p 1 2 s V9(A*)h 

males
(female sterility)

a 1 
c e 1p p V(A*) V9(A*) 1 2 s V(A*)m m m, 

V(A*) c e 1 2(1 2 sd) V(A*)h o o h c e 1 1p p 1 2 s V9(A*)h 

Therefore, males can increase in frequency for large areas of
the parameter space where male priority occurs, and vice
versa for invasion of females in female-priority areas (Fig.
2).

This result is the same as the classical results from Lloyd
(1975) and Charlesworth and Charlesworth (1978): If there
is accelerating compensation from the elimination of one
sexual function, then hermaphroditism is destabilized. Oth-
erwise, another noncompensatory source of unisexual ad-
vantage is required: in the case of females, the outcrossing
advantage (i.e., in Fig. 2, females can increase in frequency
for a large range of parameters under a combination of self-
fertilization and high inbreeding depression). The difference
and originality of this model is the source of that accelerating
fitness gain: (1) a nonlinear trade-off between flower size and
number; and (2) a convex function of investment in attrac-
tants and pollinator visitation.

Why Invasion of Males in Hermaphrodites Is Rare in
Nature

The model only treats invasion of unisexuals (female or
male) in populations of hermaphrodites. As unisexual plants
become well established, there may be selection for gender
segregation with a gradual reduction in the seed or pollen
fecundity of hermaphroditic plants, leading to the evolution
of dioecy. Even if this possibility was taken into consider-

ation, the prediction that males can exclusively increase in
frequency for a large range of parameter space contradicts
the fact that androdioecy is extremely rare (Darwin 1877)
and there are no authenticated examples of the evolution of
dioecy from androdioecy, although the pathway to dioecy
from gynodioecy seems very common (e.g., Connor 1972;
Arroyo and Raven 1975; Trexler and Travis 1990; Weller
and Sakai 1990).

This contradiction between prediction and observation
raises the question of whether the assumption of sigmoidal
pollinator gain-curve is met in nature. This is because if it
is a sigmoidal function (convex function, at least when A is
small), the model predicts that males can increase in fre-
quency for a large range of parameter space, where females
cannot increase. Although the spread of males also requires
both occurrence of male-priority and nonlinear size-number
trade-offs, they are likely to be satisfied in many animal-
pollinated plants, as shown below. Bell (1985) suggest that
male priority generally happens in animal-pollinated plants,
because artificial reduction of pollinator-attractive organs of
several species decreased the amount of pollen exported from
flowers but not seed production. His suggestion is consistent
with results from other species (Stanton et al. 1986; Campbell
1989), indicating that male priority widely occurs in animal-
pollinated plants. Female and equal priority may also be com-
mon, however, because outcrossed seed production is limited
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FIG. 2. Area of parameter space resulting in females and males can increase in frequency when they are introduced into a hermaphroditic
population with ESS allocation. V(A) was assumed to be (a) a logarithmic function and (b) a sigmoidal function of investment in attractive
structures. For each of the V(A) functions, this evaluation was conducted for each of three values of a, three values of s (selfing rate),
and two values of d (inbreeding depression), each presented in a separate panel. b 5 1 was assumed for all the calculations.

by pollinator visitation in many species (reviewed by Burd
1994). There are no empirical studies quantifying the degree
of nonlinearly in the size-number trade-offs of flower, as far
as I know. However, a theoretical study showed that size-
number trade-offs should be nonlinear due to metabolic fac-
tors; the organism can reduce the time needed to complete
organ growth by increasing the number of organs, and faster
completion of organ growth reduces the loss of resources due

to maintenance respiration, resulting in a larger total size
organ (Sakai and Harada 2001). Sakai (2000) provided some
support for this prediction, showing that nonlinearity explains
general trends in the size of attractive structures of a flower
(i.e., the size of attractive structures is smaller in male flowers
than in female flowers in dioecious plants, and flower size
decreases with an increase in self-fertilization among her-
maphroditic plants).
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In spite of the importance of pollinator gain curves for the
evolution of plant sexual systems, few studies have attempted
to quantify them. Data of Bell (1985) would suggest the gain
curve is linear in Fragaria virginiana, because per-flower
visitation increases steeply and linearly with petal mass.
Work by Kudoh and Whigham (1998) on Hibiscus moscheu-
tos, however, suggests a concave gain curve, because polli-
nators ignored flowers of 100% petal-removal treatment, but
did not significantly discriminate between flowers of the 50%
and 0% removal treatments. Clearly, more studies of this sort
are needed.

Other possible explanations for the extreme rarity of male
invasion in hermaphrodite populations might come from fac-
tors that the model did not include. For example, Pannell
(1997) emphasized the importance of metapopulation dy-
namics for favoring the maintenance of females (gynodioecy)
over males (androdioecy) with hermaphrodites, when colo-
nies are ephemeral and site recolonization is important. On
the other hand, Seger and Eckhart (1996) showed that females
are favored over males when male allocation precedes female
allocation, when growth and reproduction overlap temporal-
ly, and when there is a trade-off between them. In future
studies on the evolution of plant sexual systems, the relative
importance of these factors will need to be examined theo-
retically.
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APPENDIX

Optimum Allocation of Females
I analyze the optimal pattern of reproductive resource allocation

of females. Here, Ff 5 eoV(Af) holds. This is because, when Ff .
eoV(Af), a fraction of ovule is wasted without pollination, and when
Ff , eoV(Af), a fraction of pollinator visitation should be wasted
without ovule unfertilized. Thus, equation (3b) in the main text can
be written as

f 5 e V(A )N /2.f o f f (A1)
Then by using Lagrange’s multiplier l, the problem is equivalent

to the maximization of Ff at Af 5 and Nf 5 . Here, an asteriskA* *Nf f
on a parameter indicates that the parameter has an optimal value:

aF 5 e V(A )N /2 1 l{T 2 N [A 1 c e V(A ) 1 b] }. (A2)f o f f f f o o f

From
]F f

5 0, (A3a)) *]A A 5Af f f
*N 5Nf f

]F f
5 0, and (A3b)) *]N A 5Af f f

*N 5Nf f

]F f
5 0, (A3c)) *]l A 5Af f

*N 5Nf f

we have
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a21* * *e V9(A ) 5 2la[c e V(A ) 1 A 1 b]o f o o f f

*3 [1 1 c e V9(A )], (A4a)o o f

a* * *e V(A ) 5 2l[c e V(A ) 1 A 1 b] , (A4b)o f o o f f

a* * *T 5 N [c e V(A ) 1 A 1 b] , (A4c)f o o f f

respectively. From equations (A4a) and (A4b), we have

1
* * *A 5 aV(A ) c e 1 2 c e V(A ) 2 b. (A5)f f o o o o f[ ]*V9(A )f

From equations (A4c) and (A5),

a

1
* *N 5 T aV(A ) c e 1 . (A6)f f o o@5 6[ ]*V9(A )f

Optimum Allocation of Males

I analyze the optimal pattern of reproductive resource allocation
of males. Here, Mm 5 epV(Am) holds. This is because, when Mm .
epV(Am), a fraction of pollen is wasted without being exported, and
when Mm , epV(Am), a fraction of pollinator visitation should be
wasted without pollen available to export. Thus, equation (3c) can
be written as

f 5 We V(A )N /2.m p m m (A7)

Then, by using Lagrange’s multiplier l, the problem is equivalent
to the maximization of F, which comes from equation (A7) and
constraint (1c), at Am 5 and Nm 5 Nm*. Here, an asterisk on aA*m
parameter indicates that the parameter has an optimal value:

aF 5 We V(A )N /2 1 l{T 2 N [A 1 c e V(A ) 1 b]} . (A8)m p m m m m p p m

From

]Fm 5 0, (A9a)) *]A A 5Am m m
*N 5Nm m

]Fm 5 0, and (A9b)) *]N A 5Am m m
*N 5Nm m

]Fm 5 0, (A9c)) *]l A 5Am m
*N 5Nm m

we have
a21* * *We V9(A ) 5 2la[c e V(A ) 1 A 1 b]p m p p m m

*3 [1 1 c e V9(A )], (A10a)p p m

a* * *We V(A ) 5 2l[c e V(A ) 1 A 1 b] , (A10b)p m p p m m

a* * *T 5 N [c e V(A ) 1 A 1 b] , (A10c)m p p m m

respectively. From equations (A10a) and (A10b), we have

1
* * *A 5 aV(A ) c e 1 2 c e V(A ) 2 b. (A11)m m p p p p m[ ]*V9(A )m

From equations (A10c) and (A11),
a

1
* *N 5 T aV(A ) c e 1 . (A12)m m p p@5 6[ ]*V9(A )m


